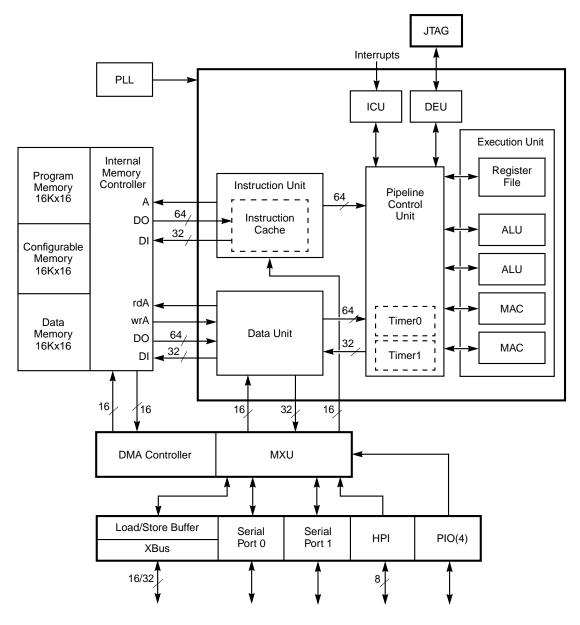
LSI403LP Digital Signal Processor Preliminary Datasheet

The LSI403LP is a 16-bit, fixed-point digital signal processor (DSP) based on the ZSP[®]400 DSP core. The LSI403LP contains an entire DSP system on a single chip, and is designed for applications requiring lower power consumption, high throughput and flexibility such as consumer and customer premises communications equipment.

The LSI403LP operates at a clock rate of 150 MHz for a maximum effective throughput of 600 RISC-like MIPS. The LSI403LP RISC architecture is easy to program, and it uses a four-way superscalar pipeline with five stages to process up to 20 instructions at a time. The processor's execution unit contains two multiplier/accumulator (MAC) units and two arithmetic logic units (ALUs). The LSI403LP also supports single cycle add-compare-select, bit manipulation, and 32-bit arithmetic and logic operations.


The LSI403LP provides 16 Kwords of on-chip instruction Random-Access Memory (RAM) and 16 Kwords of on-chip data RAM plus an additional bank of 16 Kwords of RAM that can be configured for use as instruction or data memory with an 8 Kword granularity. For optimum I/O performance and flexibility, the LSI403LP contains two high-speed time-division multiplexing (TDM) serial ports, a single 8-bit host processor interface (HPI), an external memory interface unit (MXU), and a 4-pin programmable I/O (PIO) port. This peripheral set is supported by an 8-channel DMA controller, which can transfer data between any peripheral and the on-chip memories. An IEEE 1149.1 Joint Test Activity Group (JTAG) port supports program download and debug in addition to boundary scan.

LSI Logic provides a software development kit containing an assembler, linker, GUI debugger, simulator, C compiler, and JTAG-based hardware emulator. Development tools are also available from Green Hills Software, Inc.

The LSI403LP core logic operates at 1.2 V and its I/O operates at 3.3V, and is packaged in a 208-pin plastic quad flat pack (PQFP) package.

Figure 1 shows a block diagram of the LSI403LP.

Note:

DEU = Device Emulation Unit HPI = Host Processor Interface ICU = Interrupt Control Unit PLL = Phase-Locked Loop XBus = External Bus

Features and Benefits

Processor

- RISC architecture
 - Instruction grouping by hardware for parallel execution
- Four-way superscalar architecture
 - Two MACs
 - Two ALUs
- 600 RISC-like MIPS maximum throughput at a clock rate of 150 MHz
- Multitasking support
 - Low-latency interrupt structure with programmable priority levels
 - Efficient context switch support
- On-chip PLL for clock generation

Applications

- Optimized for communications infrastructure applications
 - Single-cycle, dual 16-bit MAC with 40-bit result
 - Single-cycle, high-precision (32-bit)
 MAC with 40-bit result
 - Two-cycle complex multiply
 - Control code optimized instructions
 - Supported by wide range of VoIP software

Technology

• 208-pin PQFP package

Memory

- 16 Kword internal instruction RAM
- 16 Kword internal data RAM
- 16 Kword configurable RAM
- 1 Kword Boot RAM
- 8-channel DMA controller with continuous mode
 - Supports fast I/O transfers
 - High speed transfer from peripherals to/from internal RAMs
- 32-bit MXU
 - Glueless interface to synchronous-burst SRAMs (SBSRAMs)
 - 18-bit address space (512 Kwords) for instruction and data memory
- Glueless interface to 16-bit SRAMs

I/O

- Two high-speed TDM serial ports
 - H.100/H.110 bitstream-compatible
 - Integral u-Law / A-Law companding
- 8-bit HPI
- 4-pin PIO port
- IEEE 1149.1-compliant JTAG port

Timers

- Two 16-bit timers with a 6-bit prescaler
- Single-shot and continuous mode

Functional Description

The LSI403LP contains an entire DSP system and allows the attachment of external memory and peripherals. See Figure 1 for a block diagram of the LSI403LP.

Core Modules

The pipeline control unit groups instructions, resolves dependencies, and schedules instructions for execution by the execution unit. The pipeline control unit also processes interrupt requests forwarded from the ICU.

The LSI403LP contains a four-way, superscalar, five-stage pipeline. At any time, up to 20 instructions may be in various stages of the pipeline. The five pipeline stages of this machine are: Fetch/Decode (F/D), Group (G), Read (R), Execute (E), and Write (W).

The pipeline control unit also contains two 16-bit timers for interrupt generation. Both timers are fully-programmable and have 6-bit prescalers. When enabled, the timers count down from the user-specified initial value to zero at a rate determined by the scaled output of the LSI403LP output clock. The timers generate an interrupt when zero is reached. The timers can be configured to reload automatically with the initial count to generate periodic interrupts.

The data unit fetches and stores data into the data cache. The data unit contains the data prefetcher and cache, and contains the logic for two circular buffers.

The instruction unit fetches instructions, decodes and dispatches them, and places the instructions in the instruction cache. The instruction unit contains the instruction cache, the instruction prefetcher, and the instruction dispatch unit. The instruction unit also contains branch prediction logic.

The control register file contains a set of 16-bit control registers used for mode control, status, and flag information.

The execution unit performs all arithmetic and logical operations in the LSI403LP. The execution unit contains two 16-bit ALUs, two 16-bit x 16-bit MAC units, and a general purpose (operand) register file.

The two ALUs are identical and can be combined as a single 32-bit ALU. The MAC units can perform two 16-bit x 16-bit multiply operations and a single 40-bit accumulation per cycle, or one 32-bit x 32-bit multiply operation and a single 40-bit accumulation per cycle.

Memory

The LSI403LP has three main sections of on-chip memory - internal instruction RAM, internal data RAM and configurable RAM. The configurable RAM is constructed from two 8 Kword blocks. Each of these blocks can be configured as instruction or data memory via a control register. The configurable RAM is disabled by default.

In addition to the other RAM, the LSI403LP contains a 1 Kword block of instruction memory at 0xF800. This memory is available for use when booting through the HPI port or for other purposes such as ISR space.

The memory interface unit connects the LSI403LP to off-chip memory or peripherals through a 32-bit data bus and an 18-bit address bus. The memory interface unit provides a glueless interface to 16-bit asynchronous memory devices (ROM, EPROM, and SRAM) and 32-bit SBSRAMs.

I/O Units

The LSI403LP contains two identical serial ports capable of 8- or 16-bit active or passive transfers. In active mode, the serial port generates its own bit clock and sync signals. The serial port bit clock frequency is determined by the processor clock rate divided by a user-specified value. The maximum transfer rate in both modes is one-half the processor clock rate.

Both LSI403LP serial ports provide a TDM mode compatible with T1/E1 framers or the local serial bus of H.100/H.110 interface devices. The TDM mode can also establish a serial multiprocessor communication link with only three signals. The user selects the word length (8 or 16 bits) and frame length (1–128 time slots) for TDM transfers. Transmit and receive time slots are programmed individually, and can be modified on the fly.

Both serial ports can automatically transform 16-bit linear PCM data into 8-bit u-Law or A-Law companded data before transmission and/or

decode companded data into linear data upon reception. The companding algorithm used by the LSI403LP hardware complies to the G.711 ITU-T standard.

The HPI provides an asynchronous 8-bit parallel port for interfacing with off-chip devices. The HPI is compatible with Motorola- and Intel-style memory interfaces. The DMA controller can automatically pack 8-bit data from the HPI into 16-bit words before writing it to memory and vice-versa, thereby ensuring efficient internal memory usage. The control, transmit data, and receive data registers are memory-mapped. Both the TX and RX ports of the HPI contain 64-word FIFOs.

Four PIO signals support a general-purpose hardware interface. Each PIO may be configured as an input pin or an output pin.

DMA Controller

The LSI403LP's 8-channel DMA controller supports zero-overhead instruction or data transfers to/from the entire 48Kwords of internal RAM to the memory interface unit (external expansion bus), one of the serial ports, or the HPI. The eight DMA channels are segmented between four indexed and four non-indexed channels. Each channel can be pre-programmed for the next DMA transfer while the current transfer is in progress.

Indexed DMA channels perform sequential or indexed accesses to/from internal memory. These channels are designed specifically to work with the TDM serial ports. Data buffers can read from or write to DSP memory corresponding to logical TDM channels (time slots). The user specifies the buffer length and the number of buffers to service, and the DMA controller automatically updates the pointer for each transfer within a frame. When a frame transfer completes, the pointer updates the memory address and begins transferring data for the next frame.

Non-indexed DMA channels perform only sequential accesses to/from internal memory. A transfer occurs at the specified memory location whenever an interrupt from the specified peripheral request occurs. The interrupt request may come from the HPI or one of the two serial ports. After the interrupt, the pointer register updates with the next internal memory location. When the DMA channel pointer reaches the buffer length, the processor generates a DMA interrupt request and terminates the DMA transaction. When the DMA channel pointer reaches the last location of the last buffer, the processor generates a DMA interrupt and sets the bit corresponding to the channel in the DMA status register. This action terminates the DMA transaction.

All DMA channels can also operate in continuous mode, whereby a programmed DMA will automatically repeat until halted by clearing of a register control bit.

Booting

The LSI403LP boots from either the HPI port or an off-chip device (such as a FLASH memory) interfaced to its memory expansion bus. Selection of boot mode is controlled the IBOOT pin (when HIGH the LSI403LP boots from the HPI port).

JTAG Support

The JTAG port is an IEEE 1149.1-compliant test access port (TAP). When coupled with the DEU, JTAG provides access to all on-chip resources. The DEU works in conjunction with code residing in on or off chip RAM to provide full-speed in-circuit emulation, allowing full visibility and control of the device memory and registers. The JTAG port and DEU provide the capability to download code to internal and external RAM.

PLL

The LSI403LP uses a PLL to generate a high-frequency processor clock from a slower, off-chip clock source. The off-chip clock source is applied to the CLKIN pin of the DSP and must be a crystal oscillator within the frequency range of 4 to 16 MHz¹. The CLKOUT pin reflects the processor clock frequency. The processor clock can use an off-chip clock source directly by bypassing the on-chip PLL.

Power Management Operating Modes

The LSI403LP supports four modes of operation to help conserve power:

• Normal mode

^{1.} The LSI403LP is a fully-static device. The CLKIN signal will accept input down to DC when the PLL is bypassed.

DSP executes at full speed, and all peripherals are active.

• Idle mode

DSP inactive and all peripherals are active. The PLL retains its lock. Any interrupt or reset wakes the device.

• Sleep mode

DSP and all peripherals inactive. The PLL retains its lock. Any external interrupt or reset wakes the device.

Halt mode

DSP and all peripherals inactive. The PLL retains its lock. Only NMI or reset wakes the device.

Instruction Set Summary

Table 1 summarizes the ZSP instruction set used by the LSI403LP.

Table 1ZSP Instruction Set

Instruction	Description		
ABS	Absolute Value		
ABS.E	Absolute Value (Extended Precision)		
ADD	Add Immediate		
ADD	Add Registers		
ADD.E	Add Registers (Extended Precision)		
ADDC.E	Add with Carry (Extended Precision)		
AGN0	Again0		
AGN1	Again1		
AGN2	Again2		
AGN3	Again3		
AND	Logical AND		
AND.E	Logical AND (Extended Precision)		
(Sheet 1 of 6)			

Table 1ZSP Instruction Set (Cont.)

Instruction	Description		
BC	Branch on Carry		
BGE	Branch on Greater than or Equal to		
BGT	Branch on Greater than		
BITC	Bit Clear Control Register		
BITC	Bit Clear Operand Register		
BITI	it Invert Control Register		
BITI	Bit Invert Operand Register		
BITS	Bit Set Control Register		
BITS	Bit Set Operand Register		
BITT	Bit Test Control Register		
BITT	Bit Test Operand Register		
BLE	Branch on Less than or Equal to		
BLT	Branch on Less than		
BNC	Branch on No Carry		
BNOV	Branch on No Overflow		
BNZ	Branch on Not Zero		
BOV	Branch on Overflow		
BR	Unconditional Branch		
BZ	Branch on Zero		
CALL	Call Label/Operand Register		
CMACI.A	Complex MAC Imaginary to Accumulator A		
CMACI.B	Complex MAC Imaginary to Accumulator B		
CMACR.A	Complex MAC Real to Accumulator A		
CMACR.B	Complex MAC Real to Accumulator B		
(Sheet 2 of 6)			

Table 1 ZSP Instruction Set	(Cont.)
-----------------------------	---------

Instruction	Description
CMP	Compare Immediate/Register to Register
CMP.E	Compare Immediate/Register to Register (Extended Precision)
CMULI.A	Complex Multiplication Imaginary to Accumulator A
CMULI.B	Complex Multiplication Imaginary to Accumulator B
CMULR.A	Complex Multiplication Real to Accumulator A
CMULR.B	Complex Multiplication Real to Accumulator B
DMAC.A	Double MAC to Accumulator A
DMAC.B	Double MAC to Accumulator B
DMUL.A	Multiplication (Extended Precision) to Accumulator A
DMUL.B	Multiplication (Extended Precision) to Accumulator B
IMUL.A	Integer Multiply to Accumulator A
IMUL.B	Integer Multiply to Accumulator B
LD	Load
LDDU	Load Double with Update
LDU	Load with Update
LDX	Load with Register-Based Offset
LDXU	Load with Register-Based Offset And Update
MAC.A	Multiply Accumulate to Accumulator A
MAC.B	Multiply Accumulate to Accumulator B
MAC2.A	Dual MAC to Accumulator A
MAC2.B	Dual MAC to Accumulator B
MACN.A	Multiply Accumulate with Negation to Accumulator A
MACN.B	Multiply Accumulate with Negation to Accumulator B
MAX	Maximum
(Sheet 3 of 6)	

Table 1ZSP Instruction Set (Cont.)

Instruction	Description		
MAX.E	Maximum (Extended Precision)		
MIN	Minimum		
MIN.E	Minimum (Extended Precision)		
MOV	Move Control Register to Operand Register		
MOV	Move Immediate to Operand Register		
MOV	Move Operand Register to Control Register		
MOV	Move Operand Register to Operand Register		
MOV	Move to PC		
MOVH	Move Immediate to Higher Byte of Control Register		
MOVH	Move Immediate to Higher Byte of Operand Register		
MOVL	Move Immediate to Lower Byte of Control Register		
MOVL	Move Immediate to Lower Byte of Operand Register		
MUL.A	Multiply to Accumulator A		
MUL.B	Multiply to Accumulator B		
MULN.A	Multiply with Negation to Accumulator A		
MULN.B	Multiply with Negation to Accumulator B		
NEG	Negate		
NEG.E	Negate (Extended Precision)		
NOP	No Operation		
NORM	Normalize		
NORM.E	Normalize (Extended Precision)		
NOT	Logical Not		
NOT.E	Logical Not (Extended Precision)		
OR	Logical Or		
(Sheet 4 of 6)			

Table 1 ZSP Instruction Set (Cont.)	Table 1	ZSP	Instruction	Set	(Cont.)
-------------------------------------	---------	-----	-------------	-----	---------

Instruction	Description		
OR.E	Logical Or (Extended Precision)		
PADD.A	Parallel Add Registers to Accumulator A		
PADD.B	Parallel Add Registers to Accumulator B		
PSUB.A	Parallel Subtract Registers to Accumulator A		
PSUB.B	Parallel Subtract Registers to Accumulator B		
RET	Return from Subroutine		
RETI	Return from Interrupt		
REVB	Reverse Bit		
ROUND.E	Round (Extended Precision)		
SHLA	Shift Left Arithmetic Immediate		
SHLA	Shift Left Arithmetic Register		
SHLA.E	Shift Left Arithmetic Immediate (Extended Precision)		
SHLA.E	Shift Left Arithmetic Register (Extended Precision)		
SHLL	Shift Left Logical Immediate		
SHLL	Shift Left Logical Register		
SHLL.E	Shift Left Logical Immediate (Extended Precision)		
SHLL.E	Shift Left Logical Register (Extended Precision)		
SHRA	Shift Right Arithmetic Immediate		
SHRA	Shift Right Arithmetic Register		
SHRA.E	Shift Right Arithmetic Immediate (Extended Precision)		
SHRA.E	Shift Right Arithmetic Register (Extended Precision)		
SHRL	Shift Right Logical Immediate		
SHRL	Shift Right Logical Register		
SHRL.E	Shift Right Logical Immediate (Extended Precision)		
(Sheet 5 of 6)			

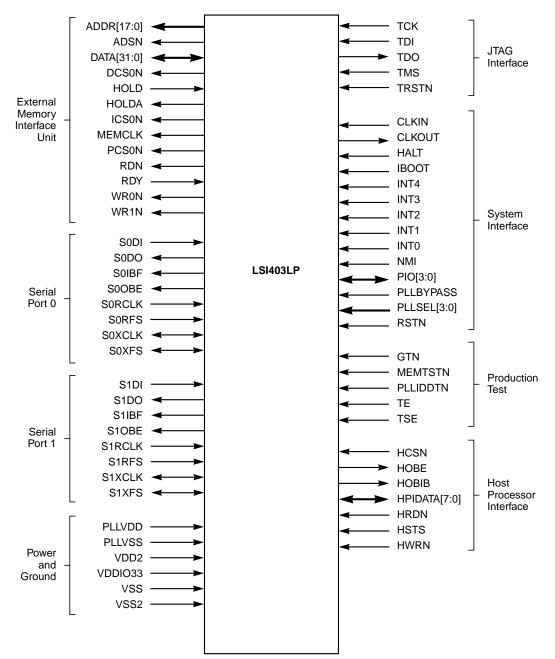

Instruction	Description
SHRL.E	Shift Right Logical Register (Extended Precision)
ST	Store
STDU	Store Double with Update
STU	Store with Update
STX	Store with Register-Based Offset
STXU	Store with Register-Based Offset And Update
SUB	Subtract
SUB.E	Subtract (Extended Precision)
SUBC.E	Subtract With Carry (Extended Precision)
VIT_A	Viterbi Instruction for Point A
VIT_B	Viterbi Instruction for Point B
XOR	Exclusive Or
XOR.E	Exclusive Or (Extended Precision)
(Sheet 6 of 6)	

Table 1ZSP Instruction Set (Cont.)

Signal Descriptions

This section describes all external LSI403LP signals. Figure 2 shows the LSI403LP interface. Signals that end with an "N" are active LOW signals.

The signals have been divided into the following tables:

- Table 2, "External Memory Interface Unit (MXU) Signals," on page 15
- Table 3, "Serial Port Signals," on page 16
- Table 4, "Power and Ground Signals," on page 16
- Table 5, "JTAG Interface Signals," on page 17
- Table 6, "System Interface Signals," on page 17
- Table 7, "Production Test Signals," on page 18
- Table 8, "Host Processor Interface (HPI) Signals," on page 18

Table 2 External Memory Interface Unit (MXU) Signals

Signal	I/O	Description
ADDR[17:0]	Output	External Memory Address Bus
ADSN	Output	SBSRAM Address Strobe
DATA[31:0]	Bidirectional	External Memory Data Bus
DCS0N	Output	Data Memory Chip Select
HOLD	Input	External Memory Access Hold Request
HOLDA	Output	External Memory Access Hold Acknowledge
ICSON	Output	Instruction Memory Chip Select
MEMCLK	Output	SBSRAM Clock
PCS0N	Output	Peripheral Chip Select
RDN	Output	Read Strobe
RDY	Input	External Device Ready Signal
WR0N	Output	Write Strobe (DATA[15:0])
WR1N	Output	Write Strobe (DATA[31:16])

Signal ¹	I/O	Description	
SxDI	Input	Data Input	
SxDO	Output	Data Output	
SxIBF	Output	Input Buffer Full	
SxOBE	Output	Output Buffer Empty	
SxRCLK	Input Receive Clock		
SxRFS	Input Receive Frame Syr		
SxXCLK	Bidirectional Transmit Clock		
SxXFS	Bidirectional	Transmit Frame Sync	

Table 3Serial Port Signals

1. Each serial port signal exists for serial port 0 and serial port 1. The signal names are preceded by S0 and S1 (for example, S0DO and S1DO).

Table 4Power and Ground Signals

Signal	I/O	Description	
PLLVDD ¹	Input	PLL Power (1.2 V)	
PLLVSS ¹	Input	PLL Ground	
VDDC	Input	Core Power (1.2V)	
VDD2	Input	Peripherals Power (1.2V)	
VDDIO33	Input	I/O Device Power (3.3 V)	
VSS	Input	I/O Device Ground	
VSSC	Input	Core Ground	
VSS2	Input	Peripherals Ground	

1. PLL must have a separate power and ground.

Table 5JTAG Interface Signals

Signal	I/O	Description
тск	Input	Test Clock
TDI	Input	Test Data In
TDO	Output	Test Data Out
TMS	Input	Test Mode Select
TRSTN	Input	Test Port Reset

Table 6 System Interface Signals

Signal	I/O	Description
CLKIN	Input	Clock Source
CLKOUT	Output	Clock Output
HALT	Input	Stop Processor Clock
IBOOT	Input	Memory Map Select
INT4	Input	External Hardware Interrupt 4
INT3	Input	External Hardware Interrupt 3
INT2	Input	External Hardware Interrupt 2
INT1	Input	External Hardware Interrupt 1
INT0	Input	External Hardware Interrupt 0
NMI	Input	Nonmaskable Interrupt
PIO[3:0]	Bidirectional	Programmable I/O Bus
PLLBYPASS	Input	PLL Bypass
PLLSEL[3:0]	Input	PLL Mode Select Bus
RSTN	Input	Device Reset

Table 7	Production	Test	Signals	
---------	------------	------	---------	--

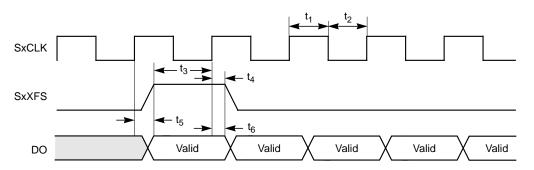
Signal	I/O	Description
GTN	Input	Reserved; Tie HIGH
MEMTSTN	Input	Reserved; Tie HIGH
PLLIDDTN	Input	Reserved; Tie HIGH
TE	Input	Reserved; Tie LOW
TSE	Input	Reserved; Tie LOW

Table 8Host Processor Interface (HPI) Signals

Signal	I/O	Description
HCSN	Input	Host Chip Select
HOBE	Output	HPI Output Buffer Empty Flag
НОВІВ	Output	HPI Output Status
HPIDATA[7:0]	Bidirectional	HPI Data Bus
HRDN	Input	Intel Mode Read Strobe/Motorola Mode Data Strobe
HSTS	Input	HPI Input Status
HWRN	Input	Intel Mode Write Strobe/Motorola Mode Data Direction Select

Functional Waveforms

This section contains functional waveforms for selected LSI403LP operations. For complete timing information, refer to the *LSI403LP Digital Signal Processor User's Guide,* Document No. DB15-000169-00. In this section, "T" refers to the DSP clock period.

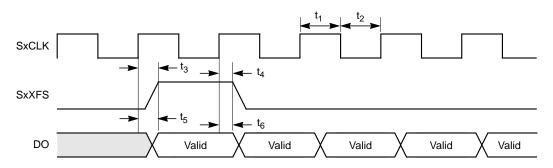

Serial Port Timing

The two serial ports in the LSI403LP are identical. This section contains transmit and receive timing waveforms for the serial ports. The timing for burst/continuous mode and TDM mode is identical.

The advance transmit frame sync (axfs) field of the sp0ct1 and sp1ct1 registers controls the relative position of the frame sync and data signals.

Figure 3 shows the transmit timing for the serial ports when the frame sync and data lines are coincident and the transmit frame sync and clock signals are generated externally. Table 9 shows the timing relations for the signals in Figure 3.

Figure 3 Serial Port Transmit Timing for axfs = 0b00 (SxXCLK/SxXFS as Inputs)

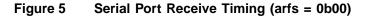

Table 9 Serial Port Transmit Timing Values (SxXCLK/SxXFS as Inputs)

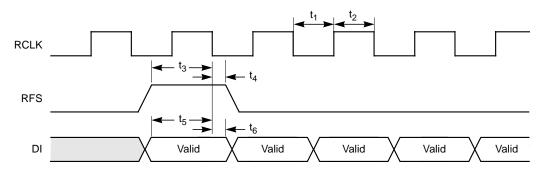
Symbol	Parameter	Minimum	Maximum	Unit
t ₁	Clock HIGH ¹	1	_	Processor Clock Periods
t ₂	Clock LOW ¹	1	-	
t ₃	SxXFS Setup Time	4	-	ns
t ₄	SxXFS Hold Time	1	-	
t ₅	Data Out Propagation Delay	1	4	
t ₆	Data Out Hold Time	1	_	

1. SxCLK must maintain a 50% duty cycle.

Figure 4 shows the transmit timing for the serial ports when the frame sync and data lines are coincident and the transmit frame sync and clock signals are generated by the serial port. Table 10 shows the timing relations for the signals in Figure 4.

Figure 4 Serial Port Transmit Timing for axfs = 0b00 (SxCLK/SxXFS as Outputs)




Table 10 Serial Port Transmit Timing Values (SxXCLK/SxXFS as Outputs)

Symbol	Parameter	Minimum	Maximum	Unit
t ₁	Clock HIGH	1	-	Processor Clock Periods
t ₂	Clock LOW	1	-	
t ₃	SxXFS Propagation Delay	1	4	ns
t ₄	SxXFS Output Hold Time	1	-	
t ₅	Data Out Propagation Delay	1	4	
t ₆	Data Out Hold Time	1	_	

The advance receive frame sync (arfs) field of the sp0ct1 and sp1ct1 registers controls the relative position of the frame sync and data signals.

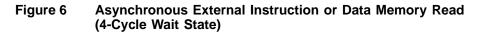
Figure 5 shows the receive timing for the serial ports when the frame sync and data lines are coincident. The receive frame sync and clock signals are always generated externally. Table 11 shows the timing relations for the signals in Figure 5.

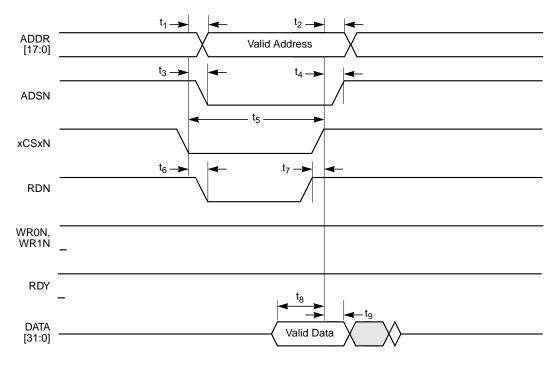
Table 11 Serial Port Receive Timing Values

Symbol	Parameter	Minimum	Maximum	Unit
t ₁	Clock HIGH ¹	1	-	Processor Clock Periods
t ₂	Clock LOW ¹	1	-	
t ₃	RFS Setup Time	4	-	ns
t ₄	RFS Hold Time	1	-	
t ₅	Data In Setup Time	4	-	
t ₆	Data In Hold Time	1	_	

1. RCLK must maintain a 50% duty cycle.

External Memory Interface Unit (MXU) Timing


The MXU connects the LSI403LP to external memory and peripherals.


Asynchronous Mode

For all waveforms in this section, replace xCSxN with the appropriate chip-select signal (DCS0N, ICS0N, or PCS0N). The dwait register fields have the following values:

- csrw is set to 0x0
- rwpw is set to 0x4
- rwcs is set to 0x0

Figure 6 shows an instruction or data memory read with four wait-state cycles. Table 12 describes the timing relationships in Figure 6.

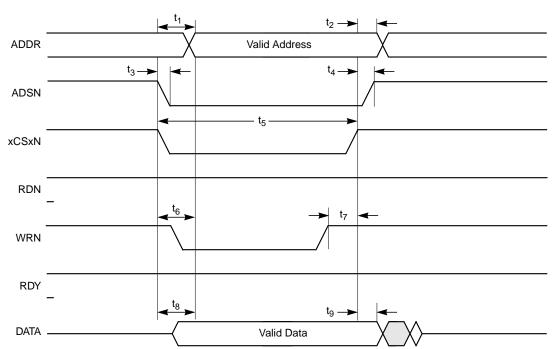


Table 12Asynchronous External Instruction or Data Memory Read Timing
(4-Cycle Wait State)

Reference	Description	Minimum ¹	Maximum ¹	Unit
t ₁	xCSxN LOW to ADDR Valid	_	1	ns
t ₂	ADDR Hold Time (xCSxN HIGH to ADDR Invalid)	2	_	ns
t ₃	xCSxN LOW to ADSN LOW	-	1	ns
t ₄	ADSN Hold Time (xCSxN HIGH to ADSN HIGH)	0	-	ns
t ₅	Enable Pulse Width (xCSxN LOW to xCSxN HIGH)	T • (csrw + rwpw + rwcs)	_	ns
t ₆	xCSxN LOW to RDN LOW	_	T • csrw	ns
t ₇	RDN HIGH to xCSxN HIGH	_	T • rwcs	ns
t ₈	Data Valid to xCSxN HIGH	т	-	ns
t ₉	Data Hold Time	0	-	ns

1. T is the processor clock cycle; csrw, rwpw, and rwcs are fields in the dwait register.

Figure 7 shows an instruction or data memory write with four wait-state cycles. Table 13 describes the timing relationships in Figure 7.

Figure 7 Asynchronous External Data or Instruction Memory Write (4-Cycle Wait State)

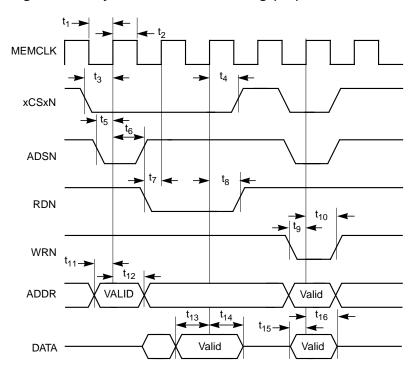
Table 13Asynchronous/External Data or Instruction Memory Write Timing
(4-Cycle Wait State)

Reference	Description	Minimum ¹	Maximum ¹	Unit
t ₁	xCSxN LOW to ADDR Valid	_	1	ns
t ₂	ADDR Hold Time (xCSxN HIGH to ADDR Invalid)	2	_	ns
t ₃	xCSxN LOW to ADSN LOW	_	1	ns
t ₄	ADSN Hold Time (xCSxN HIGH to ADSN HIGH)	0	_	ns
t ₅	xCSxN LOW to xCSxN HIGH ²	T ● (csrw + rwpw + rwcs)	_	ns

Table 13Asynchronous/External Data or Instruction Memory Write Timing
(4-Cycle Wait State) (Cont.)

Reference	Description	Minimum ¹	Maximum ¹	Unit
t ₆	xCSxN LOW to WRN LOW ²	_	T • csrw	ns
t ₇	WRN HIGH to xCSxN HIGH ²	-	T • rwcs	ns
t ₈	xCSxN LOW to Data Valid	-	1	ns
tg	Data Hold Time (xCSxN HIGH to Data Invalid)	0	_	ns

1. T is the processor clock cycle; csrw, rwpw, and rwcs are fields in the dwait register.


2. These values (~10 ns) are significantly greater than of that of t_9 (~1 ns).

Synchronous Mode

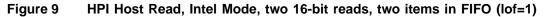
Figure 8 shows the timing for synchronous external instruction or data reads. Table 14 describes the timing relationships shown in Figure 8.

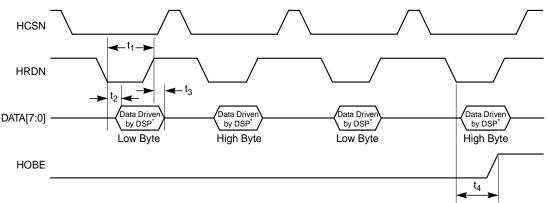
Figure 8

Synchronous Mode Timing (2:1) Mode

Table 14 Synchronous Mode Timing (2:1) Mode

Symbol	Description	Minimum	Maximum	Unit
t ₁	Clock LOW	1	_	Cycles
t ₂	Clock HIGH	1	_	Cycles
t ₃	xCSxN LOW to Clock HIGH	0.5	_	ns
t ₄	Clock HIGH to xCSxN HIGH	5	_	ns
t ₅	ADSN Low to Clock HIGH	0.5	_	ns
t ₆	Clock HIGH to ADSN HIGH	5	_	ns
t ₇	RDN Low to Clock HIGH	0.5	_	ns
t ₈	Clock High to RDN HIGH	5	_	ns
t ₉	WRN Low to Clock HIGH	0.5	_	ns
t ₁₀	Clock HIGH to WRN HIGH	5	_	ns
t ₁₁	ADDR Setup	0.3	_	ns
t ₁₂	Clock HIGH to ADDR INVALID	5	_	ns
t ₁₃	Read Data Setup	5	_	ns
t ₁₄	Read Data Hold	0	_	ns
t ₁₅	Write Data VALID to Clock HIGH	0.3	_	ns
t ₁₆	Clock HIGH to Write Data INVALID	5	_	ns

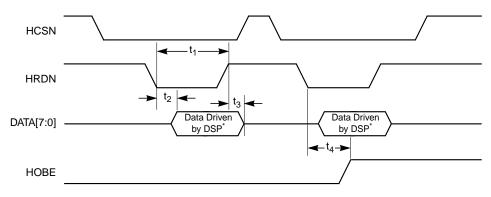

Host Port Interface (HPI) Timing


The HPI provides an asynchronous 8-bit parallel port for interfacing with off-chip devices. The HPI operates in Intel or Motorola mode.

Intel Mode

In Intel mode, HPI read cycles can be initiated/ended by the HRDN read strobe signal or the HCSN chip-select signal. To begin the read, HCSN and HRDN must be LOW. The last falling edge determines the starting time of the read cycle. Conversely, the first rising edge of HCSN or HRDN signals the end of the read cycle.

Figure 9 and Figure 10 illustrate host reads initiated and completed by HRDN. Table 15 and Table 16 describe the timing relationships in these figures.

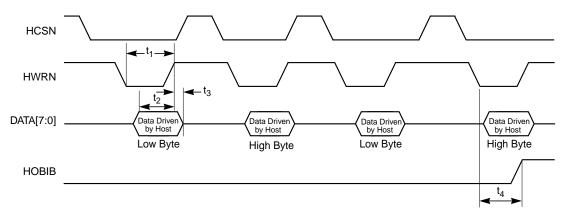


Note: ^{*}Data is driven by the LSI403LP Digital Signal Processor (DSP).

Table 15	HPI Host Read, Intel Mode, two 16-bit reads, two items in FIFO (lof=	=1)

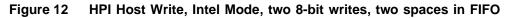
Reference	Description	Minimum	Maximum	Unit
t ₁	Minimum Read Pulse Width	1.5T	_	ns
t ₂	Read Data Delay Time (LOW to VALID)	-	1.3	ns
t ₃	Read Data Hold Time (HIGH to INVALID)	1.3	-	ns
t ₄	HOBE Delay Time for last datum in FIFO	1.3	T - 1.5	ns

Note: ^{*}Data is driven by the LSI403LP Digital Signal Processor (DSP).


Table 16 HPI Host Read, Intel Mode, two 8-bit reads, two items in FIFO

Reference	Description	Minimum	Maximum	Unit
t ₁	Minimum Read Pulse Width	1.5T	_	ns
t ₂	Read Data Delay Time (LOW to VALID)	1.3	-	ns
t ₃	Read Data Hold Time (HIGH to INVALID)	1.3	-	ns
t ₄	HOBE Delay Time for last datum in FIFO	1.3	T - 1.5	ns

In Intel mode, HPI write cycles can be initiated/ended by the HWRN write strobe signal or the HCSN chip-select signal. To begin the write, HCSN and HWRN must be LOW. The last falling edge determines the starting time of the write cycle. Conversely, the first rising edge of HCSN or HWRN signals the end of the write cycle.


Figure 11 and Figure 12 illustrate host writes initiated and completed by HWRN. Table 17 and Table 18 describe the timing relationships in these figures.

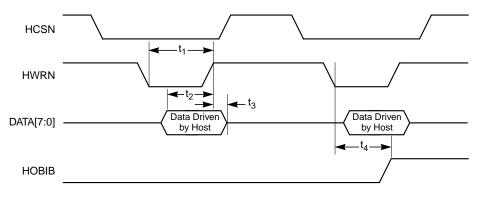


Table 17	HPI Host Write, Intel Mode, two 16-bit writes, two spaces in FIFO (lof=	:1)

Reference	Description	Minimum	Maximum	Unit
t ₁	Minimum write pulse width	1.5T	_	ns
t ₂	Write Data Setup Time	1.5T	-	ns
t ₃	Write Data Hold Time	1.3	-	ns
t ₄	IBF Delay Time for last item in FIFO	1.3	T - 1.5	ns

Table 18 HPI Host Write, Intel Mode, two 8-bit writes, two spaces in FIFO

Reference	Description	Minimum	Maximum	Unit
t ₁	Minimum write pulse width	1.5T	-	ns
t ₂	Write Data Setup Time	1.5T	-	ns
t ₃	Write Data Hold Time	1.3	-	ns
t ₄	IBF Delay Time for last item in FIFO	1.3	T - 1.5	ns

Motorola Mode

In Motorola mode, the HRDN signal operates as a data strobe for reads and writes. The HWRN signal determines the data direction. For writes, HWRN must be LOW.

Figure 13 and Figure 14 illustrate host reads initiated and completed by HRDN. Table 19 and Table 20 describe the timing relationships in these figures.

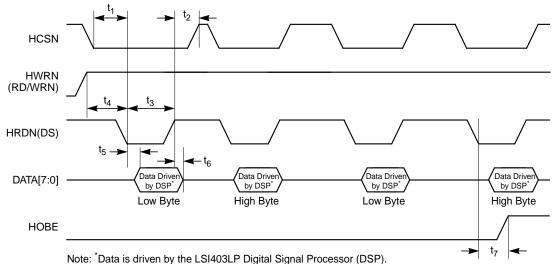
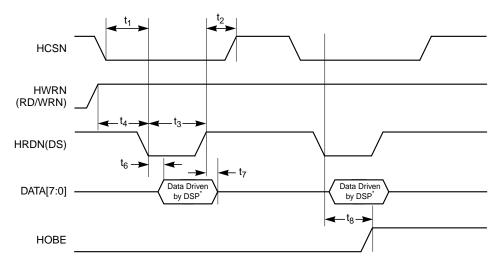



Figure 13 HPI Host Read, Motorola Mode, two 16-bit reads, 2 items in FIFO (lof=1)

Note: Data is unvertiby the Editoset Digital Digital Trocessor (Dot).

Table 19	HPI Host Read, Motorola Mode, two 16-bit reads, 2 items in FIFO (lof=	=1)

Reference	Description	Minimum	Maximum	Unit
t ₁	HCSN to HRDN Setup Time (LOW to LOW)	0	_	ns
t ₂	HRDN to HCSN Hold Time (HIGH to HIGH)	0	-	ns
t ₃	HRDN Pulse Width (LOW to HIGH)	1.5T	-	ns
t ₄	HWRN to HRDN Setup Time (HIGH to LOW)	Т	-	ns
t ₅	Read Data Delay Time (LOW to VALID)	-	1.3	ns
t ₆	Read Data Hold Time (HIGH to INVALID)	1.3	-	ns
t ₇	HOBE Delay Time	1.3	T - 1.5	ns

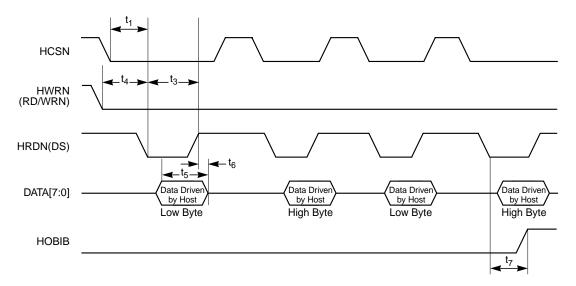

Note: *Data is driven by the LSI403LP Digital Signal Processor (DSP).

Table 20	HPI Host Read, Motorola Mod	e, two 8-bit reads, 2 items in FIFO (lof=1)

Reference	Description	Minimum	Maximum	Unit
t ₁	HCSN to HRDN Setup Time (LOW to LOW)	0	-	ns
t ₂	HRDN to HCSN Hold Time (HIGH to HIGH)	0	-	ns
t ₃	HRDN Pulse Width (LOW to HIGH)	1.5T	-	ns
t ₄	HWRN to HRDN Setup Time (HIGH to LOW)	Т	-	ns
t ₅	Read Data Delay Time (LOW to VALID)	-	1.3	ns
t ₆	Read Data Hold Time (HIGH to INVALID)	1.3	-	ns
t ₇	HOBE Delay Time	1.3	T - 1.5	ns

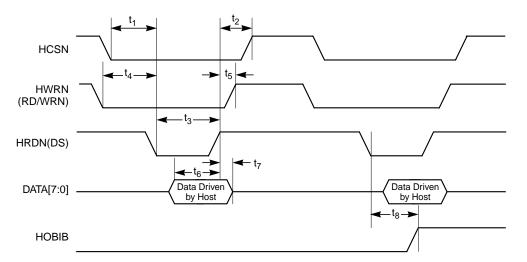

In Motorola mode, the HCSN and HRDN signals must both be asserted to perform a host write. The last falling edge determines the starting time of the write cycle. To end the write, HCSN or HRDN must be deasserted.

Figure 15 and Figure 16 illustrate host writes initiated and completed by HRDN. Table 21 and Table 22 describe the timing relationships in these figures.

Reference	Description	Minimum	Maximum	Unit
t ₁	HCSN to HRDN Setup Time (LOW to LOW)	0	_	ns
t ₂	HRDN to HCSN Hold Time (HIGH to HIGH)	0	-	ns
t ₃	HRDN Pulse Width (LOW to HIGH)	1.5T	_	ns
t ₄	HWDN to HRDN Setup Time (LOW to LOW)	Т	-	ns
t ₅	Write Data Setup Time (VALID to HIGH)	1.3	-	ns
t ₆	Write Data Hold Time (HIGH to INVALID)	-	0	ns
t ₇	HOBIB Delay Time (HIGH to HIGH)	1.3	T - 1.5	ns

Table 22 HPI Host Write, Motorola Mode, two 8-bit writes, 2 items in FIFO (lof=1)

Reference	Description	Minimum	Maximum	Unit
t ₁	HCSN to HRDN Setup Time (LOW to LOW)	0	-	ns
t ₂	HRDN to HCSN Hold Time (HIGH to HIGH)	0	-	ns
t ₃	HRDN Pulse Width (LOW to HIGH)	1.5T	-	ns
t ₄	HWDN to HRDN Setup Time (LOW to LOW)	Т	-	ns
t ₅	HRDN to HWRN Hold Time	0	-	ns
t ₆	Write Data Setup Time (VALID to HIGH)	1.3	-	ns
t ₇	Write Data Hold Time (HIGH to INVALID)	-	0	ns
t ₈	HOBIB Delay Time (HIGH to HIGH)	1.3	T - 1.5	ns

Specifications

This section describes the electrical and mechanical specifications of the LSI403LP.

Table 23 lists the DC characteristics for the LSI403LP.

Electrical Specifications

This section describes the electrical specifications of the LSI403LP.

Table 23 DC Electrical Characteristics

		V _{DD} = 1.2 V, PLLVDD = 1.2 V, V _{DDIO33} = 3.3 V		
Parameter	Symbol	Minimum	Maximum	
Input Voltage Low	V _{IL}	0 V	0.8 V	
Input Voltage High (1.2 V Supply Core)	V _{IH}	1.05 V	V _{DD} + 0.3 V	
Input Voltage High (3.3 V I/O Supply)	V _{IH}	2.0 V	V _{DDIO33} + 0.3 V	
Input Current	I _{IN}	–10 μA	10 µA	
Output Low Voltage @ +2 mA (Low)	V _{OL}	-	0.4	
Output High Voltage @ -2 mA (High)	V _{OH}	2.4	-	
Output 3-State Current Low	I _{OZL}	–10 μA	-	
Output 3-State Current High	I _{OZH}	-	–10 μA	
Input Capacitance	Cl	-	5.5 pF	

Table 24 lists the power dissipation characteristics of the LSI403LP.

Table 24Power Dissipation (1.2V Logic)

Frequency	Supply Voltage	Operating Mode	Power Dissipation
150 MHz	1.2 V	Normal	125mW (Maximum)*
150 MHz	1.2 V	Idle	25mW (Maximum)
150 MHz	1.2 V	Sleep	6.5mW (Maximum)
150 MHz	1.2 V	Halt	6.5mW (Maximum)

*Normal mode power dissipation is based on continuous execution of an FFT using both MACs/ALUs and streaming data.

Table 25 lists the recommended operating conditions for the LSI403LP.

Table 25	Recommended	Operating	Conditions
----------	-------------	-----------	------------

		V _{DD} = 1.2 V, PLLVDD = 1.2 V, V _{DDIO33} = 3.3 V		
Parameter	Symbol	Minimum	Maximum	
Core Operating Voltage	V _{DD}	1.08 V	1.32 V	
PLL Operating Voltage	PLLVDD	1.08 V	1.32 V	
I/O Operating Voltage	V _{DDIO33}	3.0 V	3.6 V	
Input Voltage	VI	0 V	3.6 V	
Output Voltage	Vo	0 V	V _{DDIO33}	
Junction Temperature (Commercial Operating Conditions)	TJ	0 °C	125 °C	
Ambient Temperature (Commercial Operating Conditions)	T _A	0 °C	70 °C	

Table 26 lists the absolute maximum ratings for the LSI403LP.

Warning: Operating beyond the limits specified in this table may cause permanent device damage.

Absolute Maximum Ratings¹ Table 26

Property	Minimum	Maximum
DC Supply Voltage (V _{DD} , PLLVDD) ²	–0.3 V	1.5 V
3.3 V I/O Input Voltage (V _{DDIO33})	–0.3 V	3.9 V

Referenced to V_{SS.}
 Internal cells operate at 1.2 V.

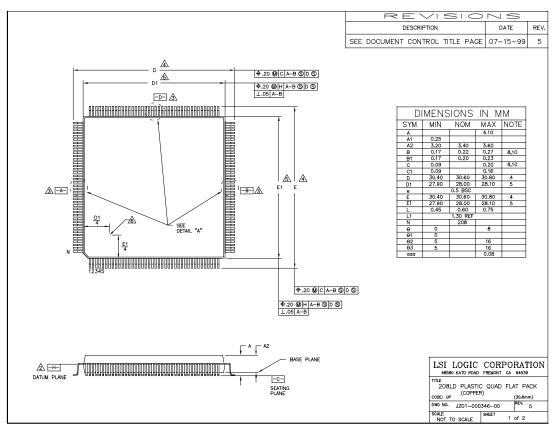
Mechanical Specifications

The LSI403LP is packaged in a 208-pin PQFP package (package code UP). Table 27 shows the package junction-case thermal resistance.

Table 27 Thermal Resistance (Junction-Case)

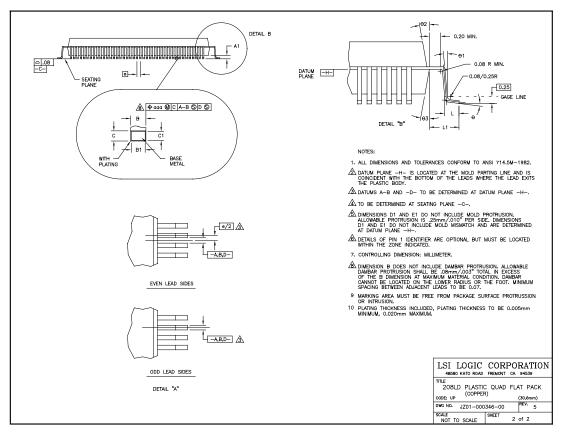
Maximum Thermal Resistance ($ heta_{JC}$, °C/W)	
7.5	

Table 28 shows the package case-to-ambient thermal resistance.


Table 28 Thermal Resistance (Case-Ambient)

Maximum Thermal Resistance (θ _{CA} , °C/W)	Airflow (LFPM) ¹
29.5	0
25.8	200
24.3	400
23.0	600

1. LPFM stands for linear feet per minute.


Figure 17 shows a mechanical drawing of the LSI403LP package.

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic representative by requesting the outline drawing for package code UP.

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic representative by requesting the outline drawing for package code UP.

Table 29 lists the mapping of LSI403LP signals to package pins.

Table 29	LSI403LP	Alphabetical	Pin List
----------	----------	--------------	----------

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
ADDR0	142	DATA21	73	PIO1	35	VDD2	48	VSS	165
ADDR1	141	DATA22	68	PIO2	32	VDD2	58	VSS	177
ADDR2	140	DATA23	67	PIO3	31	VDD2	72	VSS	193
ADDR3	139	DATA24	66	PLLBYPAS		VDDC	86	VSS	206
ADDR4	136	DATA25	65	PLLIDDTN		VDDC	100	VSS2	4
ADDR5	133	DATA26	64	PLLSELO	164	VDDC	109	VSS2	19
ADDR6	132	DATA27	61	PLLSEL1	163	VDDC	123	VSS2	33
ADDR7	131	DATA28	60	PLLSEL2	160	VDD2	137	VSS2	47
ADDR8	130 129	DATA29	59	PLLSEL3	159	VDD2	161	VSS2 VSS2	57
ADDR9	129	DATA30 DATA31	56 55	PLLVDD	150 152	VDD2 VDD2	175 189	VSSZ	71 85
ADDR10 ADDR11	126	DATAST	39	PLLVDD PLLVSS	152	VDD2 VDD2	203	VSSC	85 99
ADDR11 ADDR12	125	GTN	39 197	PLLVSS	153	VDD2 VDDIO33	203 9	VSSC	99 110
ADDR12 ADDR13	122	HALT	8	RDN	41	VDDI033	9 21	VSSC	124
ADDR14	120	HCSN	188	RDY	45	VDDIO33	37	VSS2	138
ADDR15	117	HOBE	182	RSTN	181	VDDIO33	54	VSS2	162
ADDR16	116	HOBIB	183	SODI	29	VDDIO33	63	VSS2	176
ADDR17	115	HOLD	145	SODO	22	VDDIO33	70	VSS2	190
ADSN	44	HOLDA	146	SOIBF	26	VDDIO33	79	VSS2	204
CLKIN	149	HPIDATA0		SOOBE	25	VDDIO33	88	WR0N	43
CLKOUT	147	HPIDATA1	173	SORCLK	27	VDDIO33	95	WR1N	42
DATA0	114	HPIDATA2		SORFS	28	VDDIO33	112		
DATA1	113	HPIDATA3		S0XCLK	24	VDDIO33	119		
DATA2	102	HPIDATA4		SOXFS	23	VDDIO33	128		
DATA3	101	HPIDATA5	169	S1DI	17	VDDIO33	135		
DATA4	98	HPIDATA6	168	S1DO	10	VDDIO33	144		
DATA5	97 96	HPIDATA7	167 185	S1IBF	14	VDDIO33	166		
DATA6 DATA7	96 93	HRDN HSTS	185	S1OBE S1RCLK	13 15	VDDIO33 VDDIO33	178 194		
DATA7 DATA8	93 92	HWRN	187	SIRCER	16	VSS	194		
DATA9	91	IBOOT	7	S1XCLK	12	VSS	30		
DATA10	90	ICSON	38	S1XFS	11	VSS	46		
DATA11	89	INTO	205	TCK	198	VSS	62		
DATA12	84	INT1	202	TDI	196	VSS	69		
DATA13	83	INT2	201	TDO	195	VSS	78		
DATA14	82	INT3	200	TE	154	VSS	87		
DATA15	81	INT4	199	TMS	192	VSS	94		
DATA16	80	MEMCLK	179	TRSTN	191	VSS	111		
DATA17	77	MEMTSTN		TSE	186	VSS	118		
DATA18	76	NMI	180	VDD2	5	VSS	127		
DATA19	75 74	PCSON	40	VDD2	20	VSS	134		
DATA20	74	PIO0	36	VDD2	34	VSS	143		

Notes

Notes

Headquarters

LSI Logic Corporation North American Headquarters Milpitas CA Tel: 408.433.8000 LSI Logic Europe Ltd European Headquarters Bracknell England Tel: 44.1344.426544 Fax: 44.1344.481039 LSI Logic K.K. Headquarters Tokyo Japan Tel: 81.3.5463.7821 Fax: 81.3.5463.7820

To receive product literature, visit us at http://www.lsilogic.com.

For a current list of our distributors, sales offices, and design resource centers, view our web page located at http://www.lsilogic.com/contacts/index.html.

ISO 9000 Certified

This document is preliminary. As such, it contains data derived from functional simulations and performance estimates. LSI Logic has not verified the functional descriptions or electrical and mechanical specifications using production parts.

LSI Logic, the LSI Logic logo design, and ZSP are registered trademarks of LSI Logic Corporation. All other brand and product names may be trademarks of their respective companies.

LSI Logic Corporation reserves the right to make changes to any products and services herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase, lease, or use of a product or service from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or of third parties.

GT Doc. No. DB08-000179-00